NOTES

SYNERGISM BETWEEN EFROTOMYCIN AND BOTTROMYCIN

BETTINA M. FROST, MARY E. VALIANT and Eugene L. Dulaney

Merck Institute for Therapeutic Research Rahway, New Jersey, 07065, U.S.A.

(Received for publication May 26, 1979)

Efrotomycin¹⁾ is a narrow spectrum antibiotic which is most active *in vitro* against representative species of *Pasteurella*, *Moraxella* and *Corynebacterium*²⁾. The *in vivo* activity, however, is much better than one would expect from the *in vitro* data²⁾. Experimental test systems indicate efrotomycin has a potential in selected animal infections and as a growth permittent. For example, STUTZ *et al.*³⁾ have shown efrotomycin to be effective as a growth permittant for grower swine. FOSTER and HARRIS⁴⁾ have reported the drug to show promise for prophylactic control of swine dysentery in experimental infections incited by *Treponema hyodysenteriae*. Some antibiotics which act by inhibition of protein synthesis have been tested in our laboratory in combination with efrotomycin. This paper will be confined to experiments with combinations of efrotomycin and bottromycin⁵⁾.

The in vitro antibacterial activities of efrotomycin and bottromycin alone and in combination were determined as described previously²⁾. Briefly, the surface of agar plates containing drugs were spot inoculated with 10⁻³ broth dilutions of 16-hour broth cultures. Growth was observed after 24 hours at 37°C. Sodium efrotomycin and the tertiarybutylamide of bottromycin were used in these experiments. The data are summarized in Table 1 which shows only the point of maximum synergy. Our use of the term synergy is in agreement with that of KERRY et $al.^{6}$ The synergistic effect of the two antibiotics is apparent when at least one of the drugs is active against the test organism. Synergy, where observed, was reciprocal.

Test organism	MIC ^a μ g/ml		VEIC b	Test organism	MIC ^a μ g/ml		NEICh
Test organism	E	В	ZFIC*	Test organism	E	В	∠ FIC [®]
Bordetella bronchiseptica F1728	200	100	0.38	Escherichia coli 3386	>400	> 200	G
Bordetella bronchiseptica 74	200	100	0.38	Klebsiella pneumoniae 3068	200	200	< 0.50
Bordetella bronchiseptica B	200	100	0.38	Pasteurella hemolytica 67	25	6.25	0.62
Bordetella bronchiseptica	100	100	0.31	Pasteurella hemolytica 6	25	12.5	0.38
Bordetella bronchiseptica	400	100	0.38	Pasteurella hemolytica 13	12.5	12.5	< 0.53
Bordetella bronchiseptica	200	100	0.50	Pasteurella multocida 86	3.12	3.12	0.75
Bordetella bronchiseptica	200	200	0.50	Pasteurella multocida 89	12.5	6.25	0.62
Corynebacterium renale 3164	6.25	6.25	< 0.06	Pasteurella multocida 2869	25	6.25	0.50
Enterococcus sp. 198	>400	3.12	< 0.31	Pasteurella multocida 1590	6.2	3.12	0.56
Erysipilothrix rhuziopa- thiae 87193	400	1.56	0.16	Pasteurella multocida 2871	12.5	6.25	0.50
Escherichia coli 3307	400	200	0.50	Pasteurella multocida	12.5	6.25	0.62
Escherichia coli 3317	>400	6.25	< 0.19	2013			

Table 1. In vitro antibacterial activity of efrotomycin and bottromycin alone and in combination.

(to be continued)

Test	MIC ^a µg/ml		TEICh	Test	MIC ^a µg/ml		
lest organism	Е	В	∑FIC [®]	Test organism	E	В	ZFIC
Pasteurella multocida 2909	12.5	6.25	0.50	Staphylococcus aureus 2957	>400	3.12	< 0.38
Pseudomonas aeruginosa 3210	>400	> 200	G	Staphylococcus aureus Smith	> 400	3.12	< 0.38
Pseudomonas aeruginosa 3301	>400	> 200	G	Streptococcus agalactiae 1934	12.5	0.39	0.38
Salmonella cholerae-suis	>400	> 200	< 0.75	Streptococcus pneumon- iae 3273	25	0.39	0.25
Salmonella decatur	>400	> 200	G	Streptococcus pyogenes	1.56	0.097	0.62
Salmonella schottmuelleri 3010	400	200	0.50	3332 Streptococcus pyogenes	25	0.78	0.14
Salmonella typhimurium 3404	>400	> 200	G	1685 Streptococcus pyogenes	12.5	0.39	0.28
Serratia marcescens 1543	400	> 200	G	C203 Yersinia pseudotubercu-	25	100	0.62
				losis 275		10000	

Table 1. (Continued)

a: MIC=minimal inhibitory concentration.

b: $\sum FIC = sum of fractional inhibitory concentration at the point of maximum synergy. Synergy <math>\leq 0.7^{6}$).

G = growth

Table 2. Efficacy of varied concentrations of efrotomycin given alone or in combination with two fixed concentrations of bottromycin against a *Bordetella bronchiseptica* infection^a.

Efroto- mycin mg/dose	No. of survivors/total infected mice treated with							
	Efrotomycin	Efrotomycin plus bottromycin ^b						
	alone	10 mg/dose	5 mg/dose					
0	0/12	5/12	0/12					
0.125	NT°	4/6	NT					
0.25	0/12	9/12	6/12					
0.5	0/12	11/12	5/12					
1.0	1/12	12/12	8/12					
2.0	4/12	11/12	11/12					
4.0	10/12	12/12	11/12					
$ED_{50}{}^{\rm d}$	2.47	0.163+ 10 mg bottromycin	0.551+ 5 mg bottromycir					

 a=Infection produced by intraperitoneal injection of a broth dilution of a 16-hour culture. Treatment given by gavage 0 and 6 hours after infecting. Data are combined from two tests.
b=Impure material which contained approximately

- 40% bottromycin by weight.
- c = Not tested
- $d = ED_{50}$, calculated by method of REED and MUNCH,¹⁶⁾ is given as mg efrotomycin per dose.

Table 3.	Effica	acy o	f va	ried con	centr	ations	s of b	ottro-
mycin	alone	and	in	combin	ation	with	two	fixed
concer	tration	is of	efr	otomyci	n aga	inst a	Bord	letella
bronch	iseptica	infe	ectio	on ^a .				

	No. of survivors/total infected mice treated with							
Bottro- mycin ^b mg/dose	Bottromycin	Bottromycin plus efrotomycin						
	alone	1 mg/dose	0.5 mg/dose					
Test 1 ^e								
0	0/6	0/6	0/6					
2.5	\mathbf{NT}^{d}	4/6	1/6					
5	1/6	5/6	3/6					
10	3/6	6/6	5/6					
20	1/6	6/6	4/6					
Test 2 ^e								
0	0/6	0/6	0/6					
4	0/6	0/6	0/6					
8	0/6	3/6	0/6					
16	0/6	5/6	1/6					

a=Infecting challenge and treatment done as in Table 2. Mice in both tests 1 and 2 received approximately 14 LD_{50} doses of *B. bronchiseptica*.

b=Material which was approximately 40% bottromycin by weight.

 $c\!=\!ED_{50}$ for efrotomycin alone was $3.59~mg\!\times\!2$ doses.

d = Not tested

 $e\!=\!ED_{50}$ for efrotomycin alone was 2.83 mg $\!\times\!2$ doses.

The efficacy of combined oral therapy with efrotomycin and bottromycin in *Bordetella bronchiseptica* infections has been studied by administration of a constant concentration of one drug while varying the concentration of the other drug.

Data from experiments in which bottromycin was held constant in combination with different concentrations of effotomycin are summarized in Table 2. Both concentrations of bottromycin in combination with varied doses of effotomycin gave a marked reduction in the amount of effotomycin required for 50% protection (ED₅₀).

The results of experiments in which fixed concentrations of effotomycin were combined with different concentrations of bottromycin are summarized in Table 3. We were unable to determine the ED₅₀ for bottromycin alone because of the lack of pure drug. However, with the impure sample available for testing, it seems probable that the ED₅₀ is considerably greater than two oral doses of 20 mg per mouse. This dosage level cannot be considered toxic as it was well tolerated by mice which received oral doses of efrotomycin. Bottromycin alone gave an erratic dose response in the first experiment and did not protect any of the infected mice in the second trial even though the challenge infections in both tests were approximately the same. However, in both tests combination of bottromycin with 1 mg doses of effotomycin resulted in many more survivors than with bottromycin alone. The data in Table 3 support the in vivo synergy of efrotomycin and bottromycin. Insufficient supply of bottromycin prevented further in vivo trials with B. bronchiseptica or other infections.

The best explanation for the observed synergy of efrotomycin and bottromycin is that they act at close metabolic sites. At the beginning of this study, the mode of action of kirromycin was known⁷⁾. This agent inhibits peptide bond formation by acting on elongation factor (EF-Tu)⁸⁾. Efrotomycin, which is closely related structurally to kirromycin⁹⁾, since has been found to inhibit EF-Tu dependent reactions¹⁰). Bottromycins are a group of closely related antibiotics¹¹⁾. One of these, bottromycin A2, was reported prior to this study to be an inhibitor of protein synthesis¹²⁾. The antibiotic also was shown to inhibit translocation of peptidyl-tRNA by interacting with the large ribosomal subunit^{13,14)}. More recently bottromycin A2 has been reported to cause release of aminoacyl or peptidyl-tRNA from the A site¹⁵⁾. Thus, these closely related activities of efrotomycin and bottromycin could result in synergy.

References

- WAX, R.; W. MAISE, R. WESTON & J. BIRNBAUM: Efrotomycin, a new antibiotic from *Strepto-myces lactamdurans*. J. Antibiotics 29: 670~ 673, 1976
- FROST, B. M.; M. E. VALIANT, B. WEISSBERGER & E. L. DULANEY: Antibacterial activity of efrotomycin. J. Antibiotics 29: 1083~1091, 1976
- STUTZ, M. W.; S. L. JOHNSON, K. G. OTTO & B. M. MILLER: Efrotomycin, a new growth permittant for swine. J. Animal Sci. 43: 259, 1976 (abstract)
- FOSTER, A. G. & D. L. HARRIS: Efrotomycin, a drug for swine dysentery control. J. Animal Sci. 43: 252, 1976 (abstract)
- WAISVISZ, J. M.; M. G. VANDER HOEVEN, J. VAN PEPPEN & W. C. M. ZWENNIS: Bottromycin. 1. A new sulfur-containing antibiotic. J. Am. Chem. Soc. 79: 4520~4521, 1957
- KERRY, D. W.; J. M. T. HAMILTON-MILLER & W. BRUMFITT: Trimethoprim and rifampicin: *In vitro* activities separately and in combination. J. Antimicr. Chemoth. 1: 417~427, 1975
- WOLF, H.; G. CHINALI & A. PARMEGGIANI: Kirromycin, an inhibitor of protein synthesis that acts on elongation factor tu. Proc. Nat. Acad. Sci., U.S.A. 71: 4910~4914, 1974
- WOLF, H.; G. CHINALI & H. PARMEGGIANI: Mechanism of the inhibition of protein synthesis by kirromycin. Eur. J. Biochem. 75: 67~75, 1977
- MEHR, H.; M. LEACH, L. YARMCHUK & A. STEMPEL: Antibiotic X-5108. V. Structure of antibiotic X-5108 and mocimycin. J. Am. Chem. Soc. 95: 8449~8450, 1973
- 10) WANG, C. C.; Personal Communication
- NAKAMURA, S.; T. YAJIMA, Y.-C. LIN & H. UMEZAWA: Isolation and characterization of bottromycins A₂, B₂, C₂. J. Antibiotics, Ser. A 20: 1~5, 1967
- 12) TANAKA, N.; K. SASHIKATA, H. YAMAGUCHI & H. UMEZAWA: Inhibition of protein synthesis by bottromycin A₂ and its hydrazide. J. Biochem. 60: 405~410, 1966
- 13) LIN, Y.-C.; T. KINOSHITA & N. TANAKA: Mechanism of protein synthesis inhibition by bottromycin A₂: Studies with puromycin reaction. J. Antibiotics 21: 471 ~ 476, 1968
- KINOSHITA, T. & N. TANAKA: On the site of action of bottromycin A₂. J. Antibiotics 23:

311~312, 1970

 OTAKE, T. & A. KAJI: Mode of action of bottromycin A₂. Release of aminoacyl or peptidyl tRNA from ribosomes. J. Biol. Chem. 251: 2299~2306, 1976

 REED, L. J. & H. MUNCH: A simple method for estimating fifty percent endpoints. Amer. J. Hyg. 27: 493~497, 1938